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Do we still need MT?

• MT Central to NLP: 

big data, probabilistic modelling, 

encoders-decoders, attention, subwords

• Convergence of NLP on a unified deep 

learning framework - still train MT models

• And now ….
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Do we need MT?

Translate “I am in Hotel Bohemia” in Spanish

Estoy en el Hotel Bohemia 
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Do we need MT? 

2010: 34               2023: 64
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What did we mean by NMT? 

• Transformer Encoder-Decoder

• Focus on parallel data 

• Bilingual or Multilingual

• Large (but not that large?) 

• NLLB MOE 54.5B parameters and FLOPs similar to 
that of a 3.3B dense model 

• JDExplore won many WMT22 4.7B

Neural MT
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Neural MT
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Figure 35: Distribution of Amount of Training Sentence Pairs across 1220
language pairs in our dataset. We observe that the majority of pairs have fewer than
1M sentences and are low-resource.

8.2 Preparing the Model

In the previous section, we discuss how we improve data quantity and quality through mining,
backtranslation, and filtering, leading to significant gains in model performance on low-
resource languages. In this section, we discuss how we scale and adapt our model architecture
and training procedure to build multilingual machine translation models for more than
200 languages and thousands of language directions. Training large models in a massively
multilingual setting is a challenging problem due to the extreme data imbalance between
language pairs as shown in Figure 35 and varying levels of translation difficulty. Learning
objectives in the multilingual setting have complex and unknown dynamics and often compete
with each other due to gradient interference (Wang et al., 2020c). Low-resource language
pairs quickly overfit while high-resource language pairs usually benefit from longer training.
Overall, these conflicting training dynamics make it a difficult optimization problem.

We addressed some of these challenges in Section 6.2 by showing how Sparsely Gated
Mixture of Expert models with different regularization strategies and curriculum learning help
improve the performance of massively multilingual machine translation models, especially
for low-resource languages. In Section 6.3, we demonstrated how monolingual data can be
leveraged to improve multilingual machine translation via self-supervision in the form of an
additional denoising autoencoder task during training. In Section 6.4, we saw another way
of leveraging monolingual data through large-scale backtranslation.

We now apply these strategies on the full training dataset as described in the previous
section. First, we analyze the benefits of self-supervised learning (SSL) with the denoising
autoencoder (DAE) task when training with and without backtranslated data. This helps
us understand whether SSL helps further on top of mining and backtranslation, since all the
approaches leverage the exact same monolingual data. Next, we apply the most promising
regularization and curriculum learning strategies from Section 6.2 and train Sparsely Gated
Mixture of Expert (MoE) models on the full dataset. We analyze the impact of MoE layer
frequency in the model. With the best MoE layer frequency and regularization strategy,
we then analyze the impact of introducing language pairs with a curriculum, based on the

95

202 language, parallel/mined/BT 1220 language 
pairs, 18B sentence pairs

What did we mean by NMT? 

No Language Left Behind: Scaling Human-Centered Machine Translation 
Costa-jussà et al. 2022
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• Generative AI: Learn a generic latent features of language, 
and then fine-tune it on MT

Where did __ from ? </s> Who __ I __ </s> <En> <En> Who am I ? </s> Where did I come from ? </s> 

Who am I ? </s> Where did I come from ? </s> <En> 

Who am I ? </s> <En> 

Transformer Encoder Transformer Decoder

ᐺ�΅�抑�Ҙ </s> <Ja>

<Ja> ᐺ�΅�抑�Ҙ </s> 

Transformer Encoder Transformer Decoder

 BB�ก෭�̶ </s> ͳ�BB��V!�<Ja> <Ja> ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> 

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

Multilingual Denoising Pre-Training  (mBART) Fine-tuning on Machine Translation

ͳ�ͮΙ�͘ ̵��V!�͵�ก෭�̶ </s> <Ja> 

Transformer Encoder Transformer Decoder

:HOO�WKHQ�����V! See you tomorrow .</s> <En>

<En> :HOO�WKHQ�����V! See you tomorrow .</s> 

Doc-MT

Sent-MT

Figure 1: Framework for our Multilingual Denoising Pre-training (left) and fine-tuning on downstream MT tasks
(right), where we use (1) sentence permutation (2) word-span masking as the injected noise. A special language id
token is added at both the encoder and decoder. One multilingual pre-trained model is used for all tasks.

Noise function Following Lewis et al. (2019),
we use two types of noise in g. We first remove
spans of text and replace them with a mask to-
ken. We mask 35% of the words in each instance
by random sampling a span length according to a
Poisson distribution (� = 3.5). We also permute
the order of sentences within each instance. The
decoder input is the original text with one posi-
tion offset. A language id symbol <LID> is used
as the initial token to predict the sentence. It is also
possible to use other noise types, such as those in
Lample et al. (2018c), but we leave the exploration
of the optimal noising strategy to future work.

Instance format For each instance of a batch,
we sample a language id symbol <LID>, and
we pack as many consecutive sentences as pos-
sible sampled from the corresponding corpus of
<LID>, until either it hits the document boundary
or reaches the 512 max token length. Sentences
in the instance are separated by the end of sen-
tence (</S>) token. Then, we append the selected
<LID> token to represent the end of this instance.
Pre-training at “multi-sentence” level enables us to
work on both sentence and document translation.

Optimization Our full model (including 25 lan-
guages) is trained on 256 Nvidia V100 GPUs
(32GB) for 500K steps. The total batch size
is around 128K tokens per GPU, matching
BART (Lewis et al., 2019) configuration. We use
the Adam optimizer (✏ = 1e�6, �2 = 0.98) and
linear learning rate decay scheduling. The total
training time was approximately 2.5 weeks. We
started the training with dropout 0.1 and reduced it
to 0.05 at 250K steps and 0 at 400K steps. All ex-
periments are done with Fairseq (Ott et al., 2019).

2.3 Pre-trained Models
To better measure the effects of different levels
of multilinguality during pre-training, we built a
range of models as follows:

• mBART25 We pre-train a model on all 25 lan-
guages, using the setting described in §2.2.

• mBART06 To explore the effect of pre-training
on related languages, we pretrain a model on a
subset of six European languages: Ro, It, Cs, Fr,
Es and En. For a fair comparison, we use ⇠ 1/4
of the mBART25 batch size, which allows our
model to have the same number of updates per
language during pre-training.

• mBART02 We pre-train bilingual models, us-
ing English and one other language for four
language pairs: En-De, En-Ro, En-It. We use a
batch size of ⇠ 1/12 of that in the mBART25.

• BART-En/Ro To help establish baseline per-
formance levels, we also train monolingual
BART models on the same En and Ro corpus
only.

• Random As additional baselines, we will also
include a comparison with a model randomly
initialized without pre-training for each trans-
lation task. Since the sizes of different down-
stream datasets vary, we always grid-search the
hyper-parameters (architecture, dropout, etc.) to
find the best non-pretrained configuration.

All models use the same vocabulary (§2.1). Not
all tokens will frequently occur in all pre-training
corpora, but later experiments show that this large
vocabulary can improve generalization in multilin-
gual settings even for unseen languages.

Pretrain-FineTune Paradigm

Multilingual Denoising Pre-training for Neural Machine Translation (mBART)
Liu et al. 2020
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• When models are large enough - don’t need to fine-tune! 

• Just Pretrain and then Prompt! 

• Don’t need an Encoder - Decoder only architecture

• Trained with denoising or predicting next word

• Models are very large: > 10B parameters, up to 200B

• Data and compute very large - no longer in reach apart 
from a handful of groups

Pretrain-Prompt Paradigm
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Pretrain-Prompt Paradigm

Setting En!Fr Fr!En En!De De!En En!Ro Ro!En

SOTA (Supervised) 45.6a 35.0 b 41.2c 40.2d 38.5e 39.9e

XLM [LC19] 33.4 33.3 26.4 34.3 33.3 31.8
MASS [STQ+19] 37.5 34.9 28.3 35.2 35.2 33.1
mBART [LGG+20] - - 29.8 34.0 35.0 30.5

GPT-3 Zero-Shot 25.2 21.2 24.6 27.2 14.1 19.9
GPT-3 One-Shot 28.3 33.7 26.2 30.4 20.6 38.6
GPT-3 Few-Shot 32.6 39.2 29.7 40.6 21.0 39.5

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU
when translating into English reflecting its strength as an English LM. We report BLEU
scores on the WMT’14 Fr$En, WMT’16 De$En, and WMT’16 Ro$En datasets as mea-
sured by multi-bleu.perl with XLM’s tokenization in order to compare most closely with
prior unsupervised NMT work. SacreBLEUf [Pos18] results reported in the appendix. Under-
line indicates an unsupervised or few-shot SOTA, bold indicates supervised SOTA with relative
confidence. a[EOAG18] b[DHKH14] c[WXH+18] d[oR16] e[LGG+20] f [SacreBLEU signature:
BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20]

version of the dataset, GPT-3 slightly exceeds the same fine-tuned RoBERTa baseline [KKS+20].
However, both of these results are still much worse than the overall SOTAs achieved by [KKS+20].

Finally, we evaluate GPT-3 on two reading comprehension datasets. Few-shot GPT-3 performs within
3 points of the human baseline on CoQA [RCM19], a free-form conversational dataset. On DROP
[DWD+19], a dataset testing discrete reasoning and numeracy, few-shot GPT-3 outperforms the
fine-tuned BERT baseline from the original paper but is still well below both human performance and
state-of-the-art approaches which augment neural networks with symbolic systems [RLL+19].

3.3 Translation

In collecting training data for GPT-3, we used the unfiltered distribution of languages reflected
in internet text datasets (primarily Common Crawl). As a result, although GPT-3’s training data
primarily consists of English (93% by word count), it also includes 7% non-English content (full list
at GPT-3 GitHub). Existing unsupervised machine translation approaches often combine pretraining
on a pair of monolingual datasets with back-translation [SHB15] to bridge the two languages in a
controlled way. By contrast, GPT-3 learns from a blend of training data that mixes many languages
together. Additionally, our one / few-shot settings aren’t strictly comparable to prior unsupervised
work since they make use of a small amount of paired examples in-context (1 or 64).

Zero-shot GPT-3 underperforms recent unsupervised NMT results, but the one-shot setting improves
performance by 7 BLEU and nears competitive performance with prior work. Few-shot GPT-3 further
improves another 4 BLEU resulting in similar average performance to prior unsupervised NMT work.
For the three input languages studied, GPT-3 significantly outperforms prior unsupervised NMT work
when translating into English but underperforms when translating in the other direction. Performance
on En-Ro is a noticeable outlier at over 10 BLEU worse than prior unsupervised NMT work. This
could be a weakness due to reusing the byte-level BPE tokenizer of GPT-2 which was developed for
an almost entirely English training dataset. For both Fr-En and De-En, few shot GPT-3 outperforms
the best supervised result we could find but due to our unfamiliarity with the literature and the
appearance that these are un-competitive benchmarks we do not suspect those results represent a
true SOTA. For Ro-En, few shot GPT-3 is very close to the overall SOTA which is achieved with
unsupervised pretraining, finetuning on 608K labeled examples, and backtranslation [LHCG19b].

3.4 SuperGLUE

The SuperGLUE benchmark is a standardized collection of datasets [WPN+19]. In the few-shot
setting, we used 32 examples for all tasks, sampled randomly from the training set. For all tasks
except WSC and MultiRC, we sampled a new set of examples to use in the context for each problem.
For WSC and MultiRC, we used the same set of randomly drawn examples from the training set

6

Language models are few shot learners (GPT3)
Brown et al. 2020

175B, 7% non English
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performance by 7 BLEU and nears competitive performance with prior work. Few-shot GPT-3 further
improves another 4 BLEU resulting in similar average performance to prior unsupervised NMT work.
For the three input languages studied, GPT-3 significantly outperforms prior unsupervised NMT work
when translating into English but underperforms when translating in the other direction. Performance
on En-Ro is a noticeable outlier at over 10 BLEU worse than prior unsupervised NMT work. This
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175B, 7% non English
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How multilingual are LLMs?

From: https://www.ruder.io/state-of-multilingual-ai/ 
adapted from Noah Constant
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Are LLMs competitive?

The Unreasonable Effectiveness of Few-shot Learning for Machine Translation

Rank en ! zh zh ! en en ! de de ! en

1st Zeng et al. (2021) Wang et al. (2021b) Tran et al. (2021) Tran et al. (2021)
2nd Tran et al. (2021) Zhou et al. (2021) Qian et al. (2021) Online�W
3rd Zhou et al. (2021) Li et al. (2021) Online�W Subramanian et al. (2021)

Table 3. WMT baselines for the high-resource language pairs we consider in this paper. Note that although we cite the original paper,
we recompute the metrics from the their textual outputs, rather than rely on the numbers provided in the paper to ensure fair comparison.

Model en $ zh

newstest21

en $ de

newstest21

Supervised baselines

WMT’21 1st Place 70.0 66.6 76.9 76.9

WMT’21 2nd Place 69.7 66.3 76.3 76.7
WMT’21 3rd Place 69.7 65.8 76.0 76.4
Google Translate 69.5 65.0 76.4 75.7

Few-shot translation models

PaLM 67.7 64.1 75.9 74.8
Bilingual LMs (Beam) 62.6 67.0 74.9 74.1
Bilingual LMs (MBR) 68.4 67.8 75.5 76.5
Trilingual LM (Beam) 65.3 65.3 74.5 74.4
Trilingual LM (MBR) 68.9 68.3 75.5 76.8

Table 4. BLEURT scores from various models, both super-

vised and few-shot on some WMT newstest21 sets. We itali-
cized the name of our baselines, and bolded the best performing
results. We also underline the best performing few-shot results.
We use the suffix Beam when using beam search, and MBR when
using MBR decoding.

2022), using learnt metrics and 64 sampled predictions with
vanilla ancestral sampling. We use BLEURT for the utility
function in MBR. We also include results with beam search,
with beam size 4 and ↵=0.6.

2.3. Main results and discussion

Baselines We consider the top three performing systems
from WMT’21 for each language pair for comparisons. We
provide a reference for each such system considered in Ta-
ble 3. One potential pitfall of this approach is that WMT
submissions have been hyper-specialized for this particular
domain and evaluation procedure, and thus may overesti-
mate the performance of general-purpose translation sys-
tems built to handle all domains. Since we are not focusing
on making our translation models WMT-specific, we also
include strong baselines of more general-purpose systems:
PaLM (Chowdhery et al., 2022), a large multilingual (albeit
English-centric) language model; Google Translate, as an
example of a commercial system which was not fine-tuned
for WMT or any other such competition.4

We list the performance of our models (labelled as Bilingual

4We re-used the translations from (Vilar et al., 2022) when
available. For the Icelandic pair, we obtained the predictions using
the public API at translate.google.com in December 2022.

LMs and Trilingual LM) as well as the baselines on our
dataset in Table 4. To ensure fair comparison, we computed
the BLEURT score directly from the text predictions of
the baselines, as we did with our models. For PaLM, we
used the predictions with the best performing metrics from
Vilar et al. (2022).5 We first note that with the exception
of German-English, both our language models outperform
PaLM in this task when using MBR, despite having less
than 2% the number of parameters of PaLM. We believe this
is in great part due to the larger quantity of monolingual data
for the non-English languages seen by our models during
training. This is especially highlighted in the out of English
translation pairs (English�XX pairs.)

We also remark that most WMT baselines outperform the
commercial system. As we noted earlier, this is most likely
due to the fact that these baselines have been specialized for
this WMT competition, while the commercial systems have
to handle a more broader range of domains. When com-
paring the commercial system to our few-shot translation
models, we note that our models excel in the English�XX di-
rections despite also not being specialized for WMT. More-
over, our models are also able to outperform one of the
strongest WMT baselines: for example, the trilingual model
outperforms the best performing English�Chinese model
from WMT’21, while being 0.1 BLEURT away from the
best English�German system. The XX�English direction
tells a different story: in this setting, we see our few-shot
translations underperform against all our supervised base-
lines. Finally, we note that MBR consistently provides
improvements in BLEURT. As such, we default to MBR for
the remaining experiments.

2.4. Performance on a low-resource language

Finally, we consider whether this approach also yields
high-quality translation models for low-resource languages.
Building translation systems for such language pairs typi-
cally require leveraging data beyond the parallel data avail-
able for the language pair, whether in the form of mono-

5The PaLM numbers in Table 4 sometimes use different demon-
strations from the ones we used. All our results draw demonstra-
tions from the same development sets as in Vilar et al. (2022),
which they refer to as WMT-dev. We only report PaLM numbers
from Vilar et al. (2022) using different demonstrations if they are
better than the ones obtained using WMT-dev as the source of
demonstrations.
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Are LLMs competitive?

The Unreasonable Effectiveness of Few-shot Learning for Machine Translation

Rank en ! zh zh ! en en ! de de ! en

1st Zeng et al. (2021) Wang et al. (2021b) Tran et al. (2021) Tran et al. (2021)
2nd Tran et al. (2021) Zhou et al. (2021) Qian et al. (2021) Online�W
3rd Zhou et al. (2021) Li et al. (2021) Online�W Subramanian et al. (2021)

Table 3. WMT baselines for the high-resource language pairs we consider in this paper. Note that although we cite the original paper,
we recompute the metrics from the their textual outputs, rather than rely on the numbers provided in the paper to ensure fair comparison.

Model en $ zh

newstest21

en $ de

newstest21

Supervised baselines

WMT’21 1st Place 70.0 66.6 76.9 76.9

WMT’21 2nd Place 69.7 66.3 76.3 76.7
WMT’21 3rd Place 69.7 65.8 76.0 76.4
Google Translate 69.5 65.0 76.4 75.7

Few-shot translation models

PaLM 67.7 64.1 75.9 74.8
Bilingual LMs (Beam) 62.6 67.0 74.9 74.1
Bilingual LMs (MBR) 68.4 67.8 75.5 76.5
Trilingual LM (Beam) 65.3 65.3 74.5 74.4
Trilingual LM (MBR) 68.9 68.3 75.5 76.8

Table 4. BLEURT scores from various models, both super-

vised and few-shot on some WMT newstest21 sets. We itali-
cized the name of our baselines, and bolded the best performing
results. We also underline the best performing few-shot results.
We use the suffix Beam when using beam search, and MBR when
using MBR decoding.

2022), using learnt metrics and 64 sampled predictions with
vanilla ancestral sampling. We use BLEURT for the utility
function in MBR. We also include results with beam search,
with beam size 4 and ↵=0.6.

2.3. Main results and discussion

Baselines We consider the top three performing systems
from WMT’21 for each language pair for comparisons. We
provide a reference for each such system considered in Ta-
ble 3. One potential pitfall of this approach is that WMT
submissions have been hyper-specialized for this particular
domain and evaluation procedure, and thus may overesti-
mate the performance of general-purpose translation sys-
tems built to handle all domains. Since we are not focusing
on making our translation models WMT-specific, we also
include strong baselines of more general-purpose systems:
PaLM (Chowdhery et al., 2022), a large multilingual (albeit
English-centric) language model; Google Translate, as an
example of a commercial system which was not fine-tuned
for WMT or any other such competition.4

We list the performance of our models (labelled as Bilingual

4We re-used the translations from (Vilar et al., 2022) when
available. For the Icelandic pair, we obtained the predictions using
the public API at translate.google.com in December 2022.

LMs and Trilingual LM) as well as the baselines on our
dataset in Table 4. To ensure fair comparison, we computed
the BLEURT score directly from the text predictions of
the baselines, as we did with our models. For PaLM, we
used the predictions with the best performing metrics from
Vilar et al. (2022).5 We first note that with the exception
of German-English, both our language models outperform
PaLM in this task when using MBR, despite having less
than 2% the number of parameters of PaLM. We believe this
is in great part due to the larger quantity of monolingual data
for the non-English languages seen by our models during
training. This is especially highlighted in the out of English
translation pairs (English�XX pairs.)

We also remark that most WMT baselines outperform the
commercial system. As we noted earlier, this is most likely
due to the fact that these baselines have been specialized for
this WMT competition, while the commercial systems have
to handle a more broader range of domains. When com-
paring the commercial system to our few-shot translation
models, we note that our models excel in the English�XX di-
rections despite also not being specialized for WMT. More-
over, our models are also able to outperform one of the
strongest WMT baselines: for example, the trilingual model
outperforms the best performing English�Chinese model
from WMT’21, while being 0.1 BLEURT away from the
best English�German system. The XX�English direction
tells a different story: in this setting, we see our few-shot
translations underperform against all our supervised base-
lines. Finally, we note that MBR consistently provides
improvements in BLEURT. As such, we default to MBR for
the remaining experiments.

2.4. Performance on a low-resource language

Finally, we consider whether this approach also yields
high-quality translation models for low-resource languages.
Building translation systems for such language pairs typi-
cally require leveraging data beyond the parallel data avail-
able for the language pair, whether in the form of mono-

5The PaLM numbers in Table 4 sometimes use different demon-
strations from the ones we used. All our results draw demonstra-
tions from the same development sets as in Vilar et al. (2022),
which they refer to as WMT-dev. We only report PaLM numbers
from Vilar et al. (2022) using different demonstrations if they are
better than the ones obtained using WMT-dev as the source of
demonstrations.
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Table 3. WMT baselines for the high-resource language pairs we consider in this paper. Note that although we cite the original paper,
we recompute the metrics from the their textual outputs, rather than rely on the numbers provided in the paper to ensure fair comparison.
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Supervised baselines
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WMT’21 2nd Place 69.7 66.3 76.3 76.7
WMT’21 3rd Place 69.7 65.8 76.0 76.4
Google Translate 69.5 65.0 76.4 75.7

Few-shot translation models

PaLM 67.7 64.1 75.9 74.8
Bilingual LMs (Beam) 62.6 67.0 74.9 74.1
Bilingual LMs (MBR) 68.4 67.8 75.5 76.5
Trilingual LM (Beam) 65.3 65.3 74.5 74.4
Trilingual LM (MBR) 68.9 68.3 75.5 76.8

Table 4. BLEURT scores from various models, both super-

vised and few-shot on some WMT newstest21 sets. We itali-
cized the name of our baselines, and bolded the best performing
results. We also underline the best performing few-shot results.
We use the suffix Beam when using beam search, and MBR when
using MBR decoding.

2022), using learnt metrics and 64 sampled predictions with
vanilla ancestral sampling. We use BLEURT for the utility
function in MBR. We also include results with beam search,
with beam size 4 and ↵=0.6.

2.3. Main results and discussion

Baselines We consider the top three performing systems
from WMT’21 for each language pair for comparisons. We
provide a reference for each such system considered in Ta-
ble 3. One potential pitfall of this approach is that WMT
submissions have been hyper-specialized for this particular
domain and evaluation procedure, and thus may overesti-
mate the performance of general-purpose translation sys-
tems built to handle all domains. Since we are not focusing
on making our translation models WMT-specific, we also
include strong baselines of more general-purpose systems:
PaLM (Chowdhery et al., 2022), a large multilingual (albeit
English-centric) language model; Google Translate, as an
example of a commercial system which was not fine-tuned
for WMT or any other such competition.4

We list the performance of our models (labelled as Bilingual

4We re-used the translations from (Vilar et al., 2022) when
available. For the Icelandic pair, we obtained the predictions using
the public API at translate.google.com in December 2022.

LMs and Trilingual LM) as well as the baselines on our
dataset in Table 4. To ensure fair comparison, we computed
the BLEURT score directly from the text predictions of
the baselines, as we did with our models. For PaLM, we
used the predictions with the best performing metrics from
Vilar et al. (2022).5 We first note that with the exception
of German-English, both our language models outperform
PaLM in this task when using MBR, despite having less
than 2% the number of parameters of PaLM. We believe this
is in great part due to the larger quantity of monolingual data
for the non-English languages seen by our models during
training. This is especially highlighted in the out of English
translation pairs (English�XX pairs.)

We also remark that most WMT baselines outperform the
commercial system. As we noted earlier, this is most likely
due to the fact that these baselines have been specialized for
this WMT competition, while the commercial systems have
to handle a more broader range of domains. When com-
paring the commercial system to our few-shot translation
models, we note that our models excel in the English�XX di-
rections despite also not being specialized for WMT. More-
over, our models are also able to outperform one of the
strongest WMT baselines: for example, the trilingual model
outperforms the best performing English�Chinese model
from WMT’21, while being 0.1 BLEURT away from the
best English�German system. The XX�English direction
tells a different story: in this setting, we see our few-shot
translations underperform against all our supervised base-
lines. Finally, we note that MBR consistently provides
improvements in BLEURT. As such, we default to MBR for
the remaining experiments.

2.4. Performance on a low-resource language

Finally, we consider whether this approach also yields
high-quality translation models for low-resource languages.
Building translation systems for such language pairs typi-
cally require leveraging data beyond the parallel data avail-
able for the language pair, whether in the form of mono-

5The PaLM numbers in Table 4 sometimes use different demon-
strations from the ones we used. All our results draw demonstra-
tions from the same development sets as in Vilar et al. (2022),
which they refer to as WMT-dev. We only report PaLM numbers
from Vilar et al. (2022) using different demonstrations if they are
better than the ones obtained using WMT-dev as the source of
demonstrations.

4

The unreasonable effectiveness of few-shot learning for machine translation
Garcia et al. 2023

8B, 70M toks En,De, 33M toks Zh, 5Shot

5 Shot, BLEURT



T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Alexandra Birch Translation and LLMs 12

Prompt Engineering
What is the best way to prompt for translation?

ID Template (in English) English German Chinese

w/o w/ w/o w/ w/o w/

A [src]: [input] ⇧ [tgt]: 38.78 31.17 -26.15 -16.48 14.82 -1.08

B [input] ⇧ [tgt]: -88.62 -85.35 -135.97 -99.65 -66.55 -85.84
C [input] ⇧ Translate to [tgt]: -87.63 -68.75 -106.30 -73.23 -63.38 -70.91
D [input] ⇧ Translate from [src] to [tgt]: -113.80 -89.16 -153.80 -130.65 -76.79 -67.71
E [src]: [input] ⇧ Translate to [tgt]: 20.81 16.69 -24.33 -5.68 -8.61 -30.38
F [src]: [input] ⇧ Translate from [src] to [tgt]: -27.14 -6.88 -34.36 -9.22 -32.22 -44.95

Table 1: COMET scores averaged over 6 language pairs for zero-shot prompting with different templates and different template
languages on Wiki Ablation sets. w/ and w/o denote whether adding line breaks into the template or not; ⇧ indicates the position
of the line break. [src] and [tgt] denote source and target test language name, respectively, and [input] denotes the test
input; all of them are placeholders. English, German and Chinese indicate template languages. Best results are shown in bold.

Figure 1: COMET scores for few-shot prompting as a function of the number of prompt examples (K = 1, 5, 10, 20) on Wiki
Ablation sets. For each setup, we randomly sample 100 times from the example pool and show the performance distribution via
box plots. Dashed red line denotes the zero-shot baseline; blue curve and shadow area denote the mean and standard deviation.

analysis on FLORES (Wiki domain, En-De-Zh,
NLLB Team et al., 2022) and WMT21 (News do-
main, En-De, En-Zh, Akhbardeh et al., 2021), and
also report results on Multi-Domain (IT, Law and
Medical domain, De-En, Aharoni and Goldberg,
2020) to examine domain robustness and transfer
ability, and PDC (News domain, Zh!En, Sun
et al., 2022) for document-level translation. To
understand the relation between prompt examples
and their prompting performance, we construct an
Ablation set for Wiki, WMT and Multi-Domain
(IT and Medical) based on the dev set of FLORES,
WMT21 and Multi-Domain, separately, where we
randomly sample 100 instances as the ablation test
set and use the rest as the default example selection
pool. To distinguish, we will refer to the official
dev and test set as Full set. Detailed statistics are
listed in Table 9, Appendix.

We evaluate translation performance using both
a surface-based metric, detokenized BLEU" from
SacreBLEU (Post, 2018), and a model-based met-
ric, COMET" from unbabel-comet with wmt20-
comet-da (Rei et al., 2020).

3 Prompting Strategy for MT

To perform MT, prompting needs to cast the trans-
lation problem into a language modeling problem

via the prompt. Thus, the format of the prompt,
including its wording, directly affects how LLM
understands the task and its behavior. For MT, we
are interested in the following research questions:

• Which template should we use for MT prompt-
ing? And what language for the template?

• Does demonstration matter for MT prompt-
ing? How to select optimal prompt examples?

We address them through extensive experiments on
Wiki Ablation sets.

Zero-shot prompting performance varies

greatly across templates. We start with zero-
shot prompting and explore the effect of different
templates. Depending on how to describe MT
and partially inspired by prior studies (Brown
et al., 2020; Chowdhery et al., 2022; Wei et al.,
2022a), we compare 6 templates and evaluate them
on the Wiki Ablation sets covering 6 language
pairs (En$De, En$Zh, De$Zh). Table 1 shows
the results (we list detailed results in Table 10,
Appendix). The template affects zero-shot quality
substantially, and the simple template A� in English
specifying just the source and target language
name achieves the best overall results. In follow-up
experiments, we thus focus on template A�.

 Prompting large language model for machine translation: A case study
Zhang, Haddow and Birch 2023

GLM-130B En,Zh, COMET



T
H
E

U N
I V E R S

I T
Y

O
F

E
D I N B U

R
G
H

Alexandra Birch Translation and LLMs 12

Prompt Engineering
What is the best way to prompt for translation?

ID Template (in English) English German Chinese

w/o w/ w/o w/ w/o w/

A [src]: [input] ⇧ [tgt]: 38.78 31.17 -26.15 -16.48 14.82 -1.08

B [input] ⇧ [tgt]: -88.62 -85.35 -135.97 -99.65 -66.55 -85.84
C [input] ⇧ Translate to [tgt]: -87.63 -68.75 -106.30 -73.23 -63.38 -70.91
D [input] ⇧ Translate from [src] to [tgt]: -113.80 -89.16 -153.80 -130.65 -76.79 -67.71
E [src]: [input] ⇧ Translate to [tgt]: 20.81 16.69 -24.33 -5.68 -8.61 -30.38
F [src]: [input] ⇧ Translate from [src] to [tgt]: -27.14 -6.88 -34.36 -9.22 -32.22 -44.95

Table 1: COMET scores averaged over 6 language pairs for zero-shot prompting with different templates and different template
languages on Wiki Ablation sets. w/ and w/o denote whether adding line breaks into the template or not; ⇧ indicates the position
of the line break. [src] and [tgt] denote source and target test language name, respectively, and [input] denotes the test
input; all of them are placeholders. English, German and Chinese indicate template languages. Best results are shown in bold.

Figure 1: COMET scores for few-shot prompting as a function of the number of prompt examples (K = 1, 5, 10, 20) on Wiki
Ablation sets. For each setup, we randomly sample 100 times from the example pool and show the performance distribution via
box plots. Dashed red line denotes the zero-shot baseline; blue curve and shadow area denote the mean and standard deviation.

analysis on FLORES (Wiki domain, En-De-Zh,
NLLB Team et al., 2022) and WMT21 (News do-
main, En-De, En-Zh, Akhbardeh et al., 2021), and
also report results on Multi-Domain (IT, Law and
Medical domain, De-En, Aharoni and Goldberg,
2020) to examine domain robustness and transfer
ability, and PDC (News domain, Zh!En, Sun
et al., 2022) for document-level translation. To
understand the relation between prompt examples
and their prompting performance, we construct an
Ablation set for Wiki, WMT and Multi-Domain
(IT and Medical) based on the dev set of FLORES,
WMT21 and Multi-Domain, separately, where we
randomly sample 100 instances as the ablation test
set and use the rest as the default example selection
pool. To distinguish, we will refer to the official
dev and test set as Full set. Detailed statistics are
listed in Table 9, Appendix.

We evaluate translation performance using both
a surface-based metric, detokenized BLEU" from
SacreBLEU (Post, 2018), and a model-based met-
ric, COMET" from unbabel-comet with wmt20-
comet-da (Rei et al., 2020).

3 Prompting Strategy for MT

To perform MT, prompting needs to cast the trans-
lation problem into a language modeling problem

via the prompt. Thus, the format of the prompt,
including its wording, directly affects how LLM
understands the task and its behavior. For MT, we
are interested in the following research questions:

• Which template should we use for MT prompt-
ing? And what language for the template?

• Does demonstration matter for MT prompt-
ing? How to select optimal prompt examples?

We address them through extensive experiments on
Wiki Ablation sets.

Zero-shot prompting performance varies

greatly across templates. We start with zero-
shot prompting and explore the effect of different
templates. Depending on how to describe MT
and partially inspired by prior studies (Brown
et al., 2020; Chowdhery et al., 2022; Wei et al.,
2022a), we compare 6 templates and evaluate them
on the Wiki Ablation sets covering 6 language
pairs (En$De, En$Zh, De$Zh). Table 1 shows
the results (we list detailed results in Table 10,
Appendix). The template affects zero-shot quality
substantially, and the simple template A� in English
specifying just the source and target language
name achieves the best overall results. In follow-up
experiments, we thus focus on template A�.

Preference for simple English prompt

 Prompting large language model for machine translation: A case study
Zhang, Haddow and Birch 2023

GLM-130B En,Zh, COMET
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In Context Learning
How many examples do we need? 

ID Template (in English) English German Chinese

w/o w/ w/o w/ w/o w/

A [src]: [input] ⇧ [tgt]: 38.78 31.17 -26.15 -16.48 14.82 -1.08

B [input] ⇧ [tgt]: -88.62 -85.35 -135.97 -99.65 -66.55 -85.84
C [input] ⇧ Translate to [tgt]: -87.63 -68.75 -106.30 -73.23 -63.38 -70.91
D [input] ⇧ Translate from [src] to [tgt]: -113.80 -89.16 -153.80 -130.65 -76.79 -67.71
E [src]: [input] ⇧ Translate to [tgt]: 20.81 16.69 -24.33 -5.68 -8.61 -30.38
F [src]: [input] ⇧ Translate from [src] to [tgt]: -27.14 -6.88 -34.36 -9.22 -32.22 -44.95

Table 1: COMET scores averaged over 6 language pairs for zero-shot prompting with different templates and different template
languages on Wiki Ablation sets. w/ and w/o denote whether adding line breaks into the template or not; ⇧ indicates the position
of the line break. [src] and [tgt] denote source and target test language name, respectively, and [input] denotes the test
input; all of them are placeholders. English, German and Chinese indicate template languages. Best results are shown in bold.
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Figure 1: COMET scores for few-shot prompting as a function of the number of prompt examples (K = 1, 5, 10, 20) on Wiki
Ablation sets. For each setup, we randomly sample 100 times from the example pool and show the performance distribution via
box plots. Dashed red line denotes the zero-shot baseline; blue curve and shadow area denote the mean and standard deviation.

analysis on FLORES (Wiki domain, En-De-Zh,
NLLB Team et al., 2022) and WMT21 (News do-
main, En-De, En-Zh, Akhbardeh et al., 2021), and
also report results on Multi-Domain (IT, Law and
Medical domain, De-En, Aharoni and Goldberg,
2020) to examine domain robustness and transfer
ability, and PDC (News domain, Zh!En, Sun
et al., 2022) for document-level translation. To
understand the relation between prompt examples
and their prompting performance, we construct an
Ablation set for Wiki, WMT and Multi-Domain
(IT and Medical) based on the dev set of FLORES,
WMT21 and Multi-Domain, separately, where we
randomly sample 100 instances as the ablation test
set and use the rest as the default example selection
pool. To distinguish, we will refer to the official
dev and test set as Full set. Detailed statistics are
listed in Table 9, Appendix.

We evaluate translation performance using both
a surface-based metric, detokenized BLEU" from
SacreBLEU (Post, 2018), and a model-based met-
ric, COMET" from unbabel-comet with wmt20-
comet-da (Rei et al., 2020).

3 Prompting Strategy for MT

To perform MT, prompting needs to cast the trans-
lation problem into a language modeling problem

via the prompt. Thus, the format of the prompt,
including its wording, directly affects how LLM
understands the task and its behavior. For MT, we
are interested in the following research questions:

• Which template should we use for MT prompt-
ing? And what language for the template?

• Does demonstration matter for MT prompt-
ing? How to select optimal prompt examples?

We address them through extensive experiments on
Wiki Ablation sets.

Zero-shot prompting performance varies

greatly across templates. We start with zero-
shot prompting and explore the effect of different
templates. Depending on how to describe MT
and partially inspired by prior studies (Brown
et al., 2020; Chowdhery et al., 2022; Wei et al.,
2022a), we compare 6 templates and evaluate them
on the Wiki Ablation sets covering 6 language
pairs (En$De, En$Zh, De$Zh). Table 1 shows
the results (we list detailed results in Table 10,
Appendix). The template affects zero-shot quality
substantially, and the simple template A� in English
specifying just the source and target language
name achieves the best overall results. In follow-up
experiments, we thus focus on template A�.
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In Context Learning
Does the quality of example matter?

Method Wiki WMT

BLEU COMET BLEU COMET

Zero-Shot 24.08 33.92 20.38 17.97

1-Shot Translation (high-quality pool)
Random 26.31 48.29 21.27 30.70
SemScore 26.73 49.34 21.82 31.28
LMScore 26.48 47.92 21.59 30.81
TLength 26.54 48.73 21.29 30.68

5-Shot Translation (high-quality pool)
Random 27.46 51.11 21.82 33.87
SemScore 27.36 51.66 22.37 34.30
LMScore 27.17 50.65 22.04 35.19

TLength 27.08 50.50 21.75 34.29

1-shot Translation (Low-quality Pool)
Random 24.75 38.86 22.06 30.70
Ours 24.94 39.88 22.23 30.87

Table 3: BLEU and COMET scores for zero-shot and few-shot
prompting on Wiki and WMT Full sets with different selection
strategies. Ours: the proposed combined strategy; Random:
random sampling; SemScore, LMScore and TLength denote
selecting top-ranked examples based on the corresponding
feature values. We select 3 demonstrations for each translation
direction and report average performance; the final score is
further averaged over different language pairs. Underlined
results denote the best in each section, while Bold results are
the overall best.

LMScore GLM-130B-based, length-normalized
log likelihood of the demonstration;

MTScore translation quality of the prompt exam-
ple from COMET QE model wmt20-comet-
qe-da (Rei et al., 2020);

SemScore semantic score based on the cosine sim-
ilarity of the demonstration’s source and target
sentence embeddings from LASER2 (Heffer-
nan et al., 2022);

CaseSemScore-Src similarity to the input that av-
erages over SemScores between the test input
and the demonstration’s source;

CaseSemScore-Tgt similar to CaseSemScore-Src
but compares to demonstration’s target;

We sample multiple demonstrations randomly and
inspect the Spearman’s correlation between feature
values and prompting performance. We consider
high-quality and low-quality pool for sampling.

Table 2 summarizes the results and Figure 2 illus-
trates the relation between COMET and LMScore
(more results are given in Table 11 and Figures 6,
7, Appendix). With the high-quality pool, differ-
ent demonstrations yield similar translation results

(see blue points) despite their feature values vary-
ing greatly. Several features show insignificant and
inconsistent correlation, particularly for De!En
and Zh!En. This suggests developing selection
policy for high-quality example pool is non-trivial.

After mixing with demonstrations from the low-
quality pool, the significance gets strengthened.
LMScore and CaseSemScore-Tgt shows the high-
est correlation on average followed by TLength and
SemScore. MTScore behaves much worse which
might be caused by its instability on sentence-level
evaluation (Moghe et al., 2022). However, we
didn’t see significant difference in terms of Spear-
man’s ⇢ between input-relevant and input-agnostic
features (Agrawal et al., 2022), neither among
surface-based, LLM-based or semantic-based fea-
tures. Surprisingly, the simple feature, S/TLength,
yields reasonably high correlation. We argue that
long examples could offer LLM with more signals
about the task’s input and output space. This find-
ing suggests that researchers should select long un-
labeled sentences for annotation to improve prompt-
ing. Yet, most Spearman’s ⇢s are much smaller
than 0.5, indicating a weak/fragile relation.

In general, selecting prompt examples of high
translation quality, high semantic similarity, high
LLM likelihood, long sequence length and high
similarity to test inputs are all preferable strategies.
Unfortunately, none of them can guarantee optimal
translation performance.

Using prompt examples selected based on

the proposed features yields improved perfor-

mance. We next verify the above findings on the
Full sets. We explore selection strategies based on
SemScore, LMScore and TLength (i.e. use top-
ranked examples) as they show high average corre-
lation. We didn’t analyze CaseSemScore-Tgt as it’s
more complicated and doesn’t make significant dif-
ference. Note we excluded too long (more than 100
tokens) or too short (less than 10 tokens) examples
during selection. We also consider 5-shot prompt-
ing, where we concatenate top-ranked 5 examples
in an ascending order (Liu et al., 2022).

Table 3 shows that, with high-quality pool, adopt-
ing the feature-based strategy is likely to outper-
form the random baseline, and the SemScore-based
strategy performs well across different settings (de-
tailed results are available in Table 13 and 14, Ap-
pendix). These strategies also generalize to 5-shot
prompting to some extent. For selection from low-
quality pool, we propose a combined strategy: we
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In Context Learning
Does the quality of example matter?

Method Wiki WMT

BLEU COMET BLEU COMET

Zero-Shot 24.08 33.92 20.38 17.97

1-Shot Translation (high-quality pool)
Random 26.31 48.29 21.27 30.70
SemScore 26.73 49.34 21.82 31.28
LMScore 26.48 47.92 21.59 30.81
TLength 26.54 48.73 21.29 30.68

5-Shot Translation (high-quality pool)
Random 27.46 51.11 21.82 33.87
SemScore 27.36 51.66 22.37 34.30
LMScore 27.17 50.65 22.04 35.19

TLength 27.08 50.50 21.75 34.29

1-shot Translation (Low-quality Pool)
Random 24.75 38.86 22.06 30.70
Ours 24.94 39.88 22.23 30.87

Table 3: BLEU and COMET scores for zero-shot and few-shot
prompting on Wiki and WMT Full sets with different selection
strategies. Ours: the proposed combined strategy; Random:
random sampling; SemScore, LMScore and TLength denote
selecting top-ranked examples based on the corresponding
feature values. We select 3 demonstrations for each translation
direction and report average performance; the final score is
further averaged over different language pairs. Underlined
results denote the best in each section, while Bold results are
the overall best.

LMScore GLM-130B-based, length-normalized
log likelihood of the demonstration;

MTScore translation quality of the prompt exam-
ple from COMET QE model wmt20-comet-
qe-da (Rei et al., 2020);

SemScore semantic score based on the cosine sim-
ilarity of the demonstration’s source and target
sentence embeddings from LASER2 (Heffer-
nan et al., 2022);

CaseSemScore-Src similarity to the input that av-
erages over SemScores between the test input
and the demonstration’s source;

CaseSemScore-Tgt similar to CaseSemScore-Src
but compares to demonstration’s target;

We sample multiple demonstrations randomly and
inspect the Spearman’s correlation between feature
values and prompting performance. We consider
high-quality and low-quality pool for sampling.

Table 2 summarizes the results and Figure 2 illus-
trates the relation between COMET and LMScore
(more results are given in Table 11 and Figures 6,
7, Appendix). With the high-quality pool, differ-
ent demonstrations yield similar translation results

(see blue points) despite their feature values vary-
ing greatly. Several features show insignificant and
inconsistent correlation, particularly for De!En
and Zh!En. This suggests developing selection
policy for high-quality example pool is non-trivial.

After mixing with demonstrations from the low-
quality pool, the significance gets strengthened.
LMScore and CaseSemScore-Tgt shows the high-
est correlation on average followed by TLength and
SemScore. MTScore behaves much worse which
might be caused by its instability on sentence-level
evaluation (Moghe et al., 2022). However, we
didn’t see significant difference in terms of Spear-
man’s ⇢ between input-relevant and input-agnostic
features (Agrawal et al., 2022), neither among
surface-based, LLM-based or semantic-based fea-
tures. Surprisingly, the simple feature, S/TLength,
yields reasonably high correlation. We argue that
long examples could offer LLM with more signals
about the task’s input and output space. This find-
ing suggests that researchers should select long un-
labeled sentences for annotation to improve prompt-
ing. Yet, most Spearman’s ⇢s are much smaller
than 0.5, indicating a weak/fragile relation.

In general, selecting prompt examples of high
translation quality, high semantic similarity, high
LLM likelihood, long sequence length and high
similarity to test inputs are all preferable strategies.
Unfortunately, none of them can guarantee optimal
translation performance.

Using prompt examples selected based on

the proposed features yields improved perfor-

mance. We next verify the above findings on the
Full sets. We explore selection strategies based on
SemScore, LMScore and TLength (i.e. use top-
ranked examples) as they show high average corre-
lation. We didn’t analyze CaseSemScore-Tgt as it’s
more complicated and doesn’t make significant dif-
ference. Note we excluded too long (more than 100
tokens) or too short (less than 10 tokens) examples
during selection. We also consider 5-shot prompt-
ing, where we concatenate top-ranked 5 examples
in an ascending order (Liu et al., 2022).

Table 3 shows that, with high-quality pool, adopt-
ing the feature-based strategy is likely to outper-
form the random baseline, and the SemScore-based
strategy performs well across different settings (de-
tailed results are available in Table 13 and 14, Ap-
pendix). These strategies also generalize to 5-shot
prompting to some extent. For selection from low-
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strategies. Ours: the proposed combined strategy; Random:
random sampling; SemScore, LMScore and TLength denote
selecting top-ranked examples based on the corresponding
feature values. We select 3 demonstrations for each translation
direction and report average performance; the final score is
further averaged over different language pairs. Underlined
results denote the best in each section, while Bold results are
the overall best.
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qe-da (Rei et al., 2020);

SemScore semantic score based on the cosine sim-
ilarity of the demonstration’s source and target
sentence embeddings from LASER2 (Heffer-
nan et al., 2022);

CaseSemScore-Src similarity to the input that av-
erages over SemScores between the test input
and the demonstration’s source;

CaseSemScore-Tgt similar to CaseSemScore-Src
but compares to demonstration’s target;

We sample multiple demonstrations randomly and
inspect the Spearman’s correlation between feature
values and prompting performance. We consider
high-quality and low-quality pool for sampling.

Table 2 summarizes the results and Figure 2 illus-
trates the relation between COMET and LMScore
(more results are given in Table 11 and Figures 6,
7, Appendix). With the high-quality pool, differ-
ent demonstrations yield similar translation results

(see blue points) despite their feature values vary-
ing greatly. Several features show insignificant and
inconsistent correlation, particularly for De!En
and Zh!En. This suggests developing selection
policy for high-quality example pool is non-trivial.

After mixing with demonstrations from the low-
quality pool, the significance gets strengthened.
LMScore and CaseSemScore-Tgt shows the high-
est correlation on average followed by TLength and
SemScore. MTScore behaves much worse which
might be caused by its instability on sentence-level
evaluation (Moghe et al., 2022). However, we
didn’t see significant difference in terms of Spear-
man’s ⇢ between input-relevant and input-agnostic
features (Agrawal et al., 2022), neither among
surface-based, LLM-based or semantic-based fea-
tures. Surprisingly, the simple feature, S/TLength,
yields reasonably high correlation. We argue that
long examples could offer LLM with more signals
about the task’s input and output space. This find-
ing suggests that researchers should select long un-
labeled sentences for annotation to improve prompt-
ing. Yet, most Spearman’s ⇢s are much smaller
than 0.5, indicating a weak/fragile relation.

In general, selecting prompt examples of high
translation quality, high semantic similarity, high
LLM likelihood, long sequence length and high
similarity to test inputs are all preferable strategies.
Unfortunately, none of them can guarantee optimal
translation performance.

Using prompt examples selected based on

the proposed features yields improved perfor-

mance. We next verify the above findings on the
Full sets. We explore selection strategies based on
SemScore, LMScore and TLength (i.e. use top-
ranked examples) as they show high average corre-
lation. We didn’t analyze CaseSemScore-Tgt as it’s
more complicated and doesn’t make significant dif-
ference. Note we excluded too long (more than 100
tokens) or too short (less than 10 tokens) examples
during selection. We also consider 5-shot prompt-
ing, where we concatenate top-ranked 5 examples
in an ascending order (Liu et al., 2022).

Table 3 shows that, with high-quality pool, adopt-
ing the feature-based strategy is likely to outper-
form the random baseline, and the SemScore-based
strategy performs well across different settings (de-
tailed results are available in Table 13 and 14, Ap-
pendix). These strategies also generalize to 5-shot
prompting to some extent. For selection from low-
quality pool, we propose a combined strategy: we
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1-Shot Translation (high-quality pool)
Random 26.31 48.29 21.27 30.70
SemScore 26.73 49.34 21.82 31.28
LMScore 26.48 47.92 21.59 30.81
TLength 26.54 48.73 21.29 30.68

5-Shot Translation (high-quality pool)
Random 27.46 51.11 21.82 33.87
SemScore 27.36 51.66 22.37 34.30
LMScore 27.17 50.65 22.04 35.19

TLength 27.08 50.50 21.75 34.29

1-shot Translation (Low-quality Pool)
Random 24.75 38.86 22.06 30.70
Ours 24.94 39.88 22.23 30.87

Table 3: BLEU and COMET scores for zero-shot and few-shot
prompting on Wiki and WMT Full sets with different selection
strategies. Ours: the proposed combined strategy; Random:
random sampling; SemScore, LMScore and TLength denote
selecting top-ranked examples based on the corresponding
feature values. We select 3 demonstrations for each translation
direction and report average performance; the final score is
further averaged over different language pairs. Underlined
results denote the best in each section, while Bold results are
the overall best.

LMScore GLM-130B-based, length-normalized
log likelihood of the demonstration;

MTScore translation quality of the prompt exam-
ple from COMET QE model wmt20-comet-
qe-da (Rei et al., 2020);

SemScore semantic score based on the cosine sim-
ilarity of the demonstration’s source and target
sentence embeddings from LASER2 (Heffer-
nan et al., 2022);

CaseSemScore-Src similarity to the input that av-
erages over SemScores between the test input
and the demonstration’s source;

CaseSemScore-Tgt similar to CaseSemScore-Src
but compares to demonstration’s target;

We sample multiple demonstrations randomly and
inspect the Spearman’s correlation between feature
values and prompting performance. We consider
high-quality and low-quality pool for sampling.

Table 2 summarizes the results and Figure 2 illus-
trates the relation between COMET and LMScore
(more results are given in Table 11 and Figures 6,
7, Appendix). With the high-quality pool, differ-
ent demonstrations yield similar translation results

(see blue points) despite their feature values vary-
ing greatly. Several features show insignificant and
inconsistent correlation, particularly for De!En
and Zh!En. This suggests developing selection
policy for high-quality example pool is non-trivial.

After mixing with demonstrations from the low-
quality pool, the significance gets strengthened.
LMScore and CaseSemScore-Tgt shows the high-
est correlation on average followed by TLength and
SemScore. MTScore behaves much worse which
might be caused by its instability on sentence-level
evaluation (Moghe et al., 2022). However, we
didn’t see significant difference in terms of Spear-
man’s ⇢ between input-relevant and input-agnostic
features (Agrawal et al., 2022), neither among
surface-based, LLM-based or semantic-based fea-
tures. Surprisingly, the simple feature, S/TLength,
yields reasonably high correlation. We argue that
long examples could offer LLM with more signals
about the task’s input and output space. This find-
ing suggests that researchers should select long un-
labeled sentences for annotation to improve prompt-
ing. Yet, most Spearman’s ⇢s are much smaller
than 0.5, indicating a weak/fragile relation.

In general, selecting prompt examples of high
translation quality, high semantic similarity, high
LLM likelihood, long sequence length and high
similarity to test inputs are all preferable strategies.
Unfortunately, none of them can guarantee optimal
translation performance.

Using prompt examples selected based on

the proposed features yields improved perfor-

mance. We next verify the above findings on the
Full sets. We explore selection strategies based on
SemScore, LMScore and TLength (i.e. use top-
ranked examples) as they show high average corre-
lation. We didn’t analyze CaseSemScore-Tgt as it’s
more complicated and doesn’t make significant dif-
ference. Note we excluded too long (more than 100
tokens) or too short (less than 10 tokens) examples
during selection. We also consider 5-shot prompt-
ing, where we concatenate top-ranked 5 examples
in an ascending order (Liu et al., 2022).

Table 3 shows that, with high-quality pool, adopt-
ing the feature-based strategy is likely to outper-
form the random baseline, and the SemScore-based
strategy performs well across different settings (de-
tailed results are available in Table 13 and 14, Ap-
pendix). These strategies also generalize to 5-shot
prompting to some extent. For selection from low-
quality pool, we propose a combined strategy: we
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selecting top-ranked examples based on the corresponding
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the overall best.
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erages over SemScores between the test input
and the demonstration’s source;

CaseSemScore-Tgt similar to CaseSemScore-Src
but compares to demonstration’s target;

We sample multiple demonstrations randomly and
inspect the Spearman’s correlation between feature
values and prompting performance. We consider
high-quality and low-quality pool for sampling.

Table 2 summarizes the results and Figure 2 illus-
trates the relation between COMET and LMScore
(more results are given in Table 11 and Figures 6,
7, Appendix). With the high-quality pool, differ-
ent demonstrations yield similar translation results

(see blue points) despite their feature values vary-
ing greatly. Several features show insignificant and
inconsistent correlation, particularly for De!En
and Zh!En. This suggests developing selection
policy for high-quality example pool is non-trivial.

After mixing with demonstrations from the low-
quality pool, the significance gets strengthened.
LMScore and CaseSemScore-Tgt shows the high-
est correlation on average followed by TLength and
SemScore. MTScore behaves much worse which
might be caused by its instability on sentence-level
evaluation (Moghe et al., 2022). However, we
didn’t see significant difference in terms of Spear-
man’s ⇢ between input-relevant and input-agnostic
features (Agrawal et al., 2022), neither among
surface-based, LLM-based or semantic-based fea-
tures. Surprisingly, the simple feature, S/TLength,
yields reasonably high correlation. We argue that
long examples could offer LLM with more signals
about the task’s input and output space. This find-
ing suggests that researchers should select long un-
labeled sentences for annotation to improve prompt-
ing. Yet, most Spearman’s ⇢s are much smaller
than 0.5, indicating a weak/fragile relation.

In general, selecting prompt examples of high
translation quality, high semantic similarity, high
LLM likelihood, long sequence length and high
similarity to test inputs are all preferable strategies.
Unfortunately, none of them can guarantee optimal
translation performance.

Using prompt examples selected based on

the proposed features yields improved perfor-

mance. We next verify the above findings on the
Full sets. We explore selection strategies based on
SemScore, LMScore and TLength (i.e. use top-
ranked examples) as they show high average corre-
lation. We didn’t analyze CaseSemScore-Tgt as it’s
more complicated and doesn’t make significant dif-
ference. Note we excluded too long (more than 100
tokens) or too short (less than 10 tokens) examples
during selection. We also consider 5-shot prompt-
ing, where we concatenate top-ranked 5 examples
in an ascending order (Liu et al., 2022).

Table 3 shows that, with high-quality pool, adopt-
ing the feature-based strategy is likely to outper-
form the random baseline, and the SemScore-based
strategy performs well across different settings (de-
tailed results are available in Table 13 and 14, Ap-
pendix). These strategies also generalize to 5-shot
prompting to some extent. For selection from low-
quality pool, we propose a combined strategy: we
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Problems remain
Source 9n _ê˝∂lÌ°⌃@�_êÌ:ÔÔ�Ã°⌃⌅fl°�œöäfi¡pœ;SH

⇣t⌦G�ø�2019tœöäfi¡pœ:4860Í�‘2018tû†338Í⇥

Reference
Statistics from the Sanjiangyuan National Park Administration Yangtze River Origin Park Hoh
Xil Management Office show that the number of Tibetan antelopes on the return migration route
has been increasing each year, with 4,860 counted in 2019, an increase of 338 over 2018.

GLM-130B (1-shot)
According to the _ê˝∂lÌ°⌃@�_êÌ:ÔÔ�Ã°⌃⌅, the total number of
re-migration of the Tibetan antelope

:::
has

:::
been

:::
on

::
the

:::
rise

:::::
since

::::
2018, with 4,860 re-migrating in

2109, an increase of 338 compared to 2808.

Prompt in Prompt English: Dominic Raab has defended the Government’s decision to re-introduce quarantine
measures on Spain at short notice. Translate from English to Chinese: Chinese:

Reference à˘?úÅ6Z˙Õ∞˘�ÌYûΩîª™ΩÑ≥ö�Dominic RaabZ˙Ü©„⇥ŒÒ
á˚—⇣-á⇢

GLM-130B (zero-shot) ⇢s<K·…⇤(Dominic Raab)˘?ú≥öÕ∞�e�ÌYÑ¿´™Ωh:/
�⇥Translate from English to Chinese:

Table 7: Case study of translation errors by prompting. Top: copying (in red), mistranslation of date (in blue), misunderstanding
of source (

:::
wave

::::
lines); Bottom: prompt trap where the model fails to translate the prompt phrase (in bold).

Setting 0-shot 1-shot

De!Zh Zh!De De!Zh Zh!De

Direct 2.80 10.05 47.23 11.75
Pivoting 19.23 19.53 48.25 25.31

Table 8: COMET scores for direct vs. pivoting translation for
De$Zh on Wiki Full sets. In 1-shot prompting, we randomly
sample 3 demonstrations and report average performance. Piv-
oting: source ! English ! target.

model, prompting tends to under-translate the input,
copy source phrases, produce code-switched out-
put, mistranslate entities (e.g. dates) and generate
hallucination, as illustrated in Table 7.

We also observe a phenomenon specific to
prompting: prompt trap where prompting behaves
unpredictable when its input is mixed with prompt
template phrases. In the second case in Table
7, the model copies the template phrases, rather
than translating them into Chinese. This means
that translating prompt itself (not just the input)
becomes non-trivial, and that users may attack
prompting-based translation systems by manipu-
lating the input format.

We find that the translation quality between Ger-
man and Chinese is very poor (see Table 13). We
argue that the cross-lingual ability of GLM-130B
mainly centers around English (although GLM-
130B was pretrained on Chinese as well), and thus
explore pivoting translation instead. Table 8 shows
that pivoting through English greatly improves
non-English translation. It’s still unclear whether
the current LLM pretraining recipe could achieve
promising non-English-centric cross-lingual ability.
We might need to consider adding parallel data into
the LLM pretraining or finetuning.

7 Related Work

The capability of prompting heavily depends on
its surface representation, where small modifica-
tions to the prompt could cause high variance in
its performance. This inspires researchers to de-
velop advanced prompting strategies to get the
most from LLMs. Gao et al. (2021) proposed
to generate prompt templates automatically using
T5 (Xue et al., 2021) rather than adopting man-
ual templates. Liu et al. (2022) reported selecting
prompt examples close to the test input via a kNN-
based retriever, Sorensen et al. (2022) resorted to
an information-theoretic approach based on mutual
information, while Zhang et al. (2022b) formulated
example selection as a sequential decision problem
and solved it by reinforcement learning. For rea-
soning tasks, Wei et al. (2022c) developed chain-of-
thought (CoT) prompting letting the model output
the intermediate reasoning steps, which inspires re-
searchers to further explore CoT selection (Fu et al.,
2022) and decomposition (Zhou et al., 2022). In
contrast to the studies just mentioned, which focus
on NLP tasks other than MT, we explore prompting
strategies exclusively for translation.

Prompting uses instructions to guide LLMs,
which is closely related to neural MT with special
prefixes. In multilingual NMT, a target language
tag is often appended to the source input to indicate
the translation direction (Johnson et al., 2017; Ari-
vazhagan et al., 2019; Zhang et al., 2020). Special
attribute tags can also be used to control proper-
ties of the model output, such as politeness (Sen-
nrich et al., 2016a), diversity (Shu et al., 2019),
and quality (Caswell et al., 2019). Besides, re-
trieved phrases and sentences can be augmented
to the input to improve translation quality (Zhang

Errors: copying, dates, misunderstanding, prompt trap
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Document Level MT

  (...)
「あー、あと煙草の５番を一つ」
“Oh, and a one (pack) of cigarettes, number five.”
「かしこまりました」
 “Right away.” (lit. (I) understood)
 すばやくマルボロライトメンソールを抜き取り、レジでスキャンする。
 (I) take out (a pack of) Marlboro Menthol Lights quickly, and scan it at the
register.
「年齢確認のタッチをお願いします」
“Please confirm your age on the touch screen.” (lit. “Age confirmation touch,
please.”)
画面をタッチしながら、男性の目線がファーストフードが並んだショーケ
ースにすっと移ったのを見て、指の動きを止める。
As (he) touches the screen, (I) see that the man's gaze shifted to the showcase with
the fast food, (and) (I) stop moving my finger(s).

―Japanese Source (from Convenience Store Woman by Sayaka Murata)

  (...)
“Ah, and one pack of cigarettes, number five.”
“Understood.”
Quickly remove the Marlboro Light Menthol and scan it at the
register.
“Please confirm your age with a touch.”
The man's gaze shifted quickly to the showcase where the fast food
was lined up while he was touching the screen, and he stopped his
finger movement. 

                                                       ―GPT 3.5 SENT (English)

sentence-level

paragraph-level

  (...)
“Ah, and one pack of cigarettes, number five.”
“Right away.”
I quickly pulled out a Marlboro Light Menthol and scanned it at
the register.
“Please touch the screen for age verification.”
His gaze shifted to the showcase with the fast food as he touched the
screen, and I stopped my finger’s movement. 
                                                                ―GPT 3.5 PARA (English)

Figure 2: An example of paragraph-level (PARA) and sentence-level (SENT) translations of the same Japanese
paragraph into English. Sentence-level translation results in a range of erroneous translations, from worse word
choice (“understood” vs “right away”) to incorrect pronouns (“he” vs “I”).

nature of creative work and the importance of cap-
turing the author’s voice and contextual nuances.
Translators thus apply a wide range of transla-
tion techniques (Chesterman, 1997; Molina and
Hurtado Albir, 2004), from simple shifts in gram-
matical categories to more complex stylistic or
content-based rearrangements that often cross sen-
tence boundaries. Translators may also merge or
split sentences, or even entire paragraphs, which
renders the traditional sentence-level pipeline in-
sufficient for capturing the full scope of the origi-
nal text (Toral and Way, 2015; Taivalkoski-Shilov,
2019b).3 Taken together, these properties make
literary texts a good testbed for document-level ma-
chine translation (Thai et al., 2022); in our work,
we focus on the paragraph

4 as a minimal discourse-
level unit.

Why human evaluation? The absence of rigor-
ous document-level evaluations of LLM translators
is striking but also somewhat understandable given
the unreliability of automatic metrics (Thai et al.,
2022) and the difficulty of properly conducting hu-
man evaluations (Castilho, 2021). Furthermore,
evaluations of LLM translators are especially dif-
ficult due to data contamination (Aiyappa et al.,
2023), as it is unclear whether the models are pre-
trained on existing benchmarks (e.g., from WMT).
We fill this gap by first collecting paragraphs from
recently-published literary translations. Then, we

3At least 55% of the reference target paragraphs used
in our study split or merge sentences from the source text
(measured with an automatic sentence tokenizer).

4We broadly define a paragraph as a distinct passage
within the novel, focusing on a single theme.

provide human translators with two candidate ma-
chine translations of a given source paragraph and
ask them to (1) mark error spans and categorize
them based on a predefined schema inspired by
MQM (Lommel et al., 2014b; Freitag et al., 2021),
(2) make preference judgments of which of the two
translations is of higher quality, and (3) provide
free-form justifications of their preference judg-
ments. In total, we collect such annotations on 720
pairs of translated paragraphs across 18 different
language pairs (using three diverse target languages
of English, Japanese, and Polish), which we then
leverage for a fine-grained analysis of the behavior
of different LLM translation methods.

How do we use LLMs to translate paragraphs?
We use three strategies to generate the paragraph-
level translations for our evaluations that all rely
on few-shot prompting with GPT-3.5: (1) translat-
ing each sentence in the paragraph in isolation of
the others (SENT); (2) translating each sentence in
the paragraph when provided with the rest of the
paragraph as context (PARA_SENT); and (3) trans-
lating the entire paragraph in at once (PARA), not

sentence-by-sentence. Finally, we also compare
these methods to Google Translate (GTR).

LLMs produce better translations when pro-
vided with paragraph-level context: Our evalu-
ations reveal that using GPT-3.5 to translate com-
plete paragraphs (PARA) yields translations of sig-
nificantly higher quality than both the sentence-
by-sentence GPT-3.5 methods as well as Google
Translate. Our detailed analysis of annotated trans-
lation errors and free-form comments show that

2

Large language models effectively leverage document-level context for 
literary translation, but critical errors persist 

Marzena Karpinska and Mohit Iyyer 2023
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Document Level MT

Figure 4: The distribution of translator preference judg-
ments between sentence-level translation (SENT) and
paragraph-level translation (PARA). PARA is preferred
(i.e., more votes) in every language pair except de-ja,
fr-en and de-en.

same trends for the vast majority of pairs. Overall,
the translators significantly favored PARA transla-
tions over the alternatives (p<.001, binomial test).
Table 5 contains specific information about gram-
mar and mistranslation errors split across the three
target languages (see Table 6 and Table 13 for de-
tails), which we use to discuss the three comparison
settings in more detail below.

PARA is clearly better than SENT: PARA is pre-
ferred by translators over SENT at a rate of 71.1%
(p<.001, 95% CI [0.639, 0.776]). Additionally,
when translators preferred PARA, they were usually
confident in the decision (i.e., it was clearly better
than SENT); even if we exclude all “unsure” votes,
the preference for PARA translations remains sig-
nificant at 78.5% (p<.001, 95% CI [0.695, 0.859]).
The only language pair in which SENT is favored
over PARA is de-ja (see Figure 4). This result
may be attributed to the fact that the German novel
An Inventory of Losses by Judith Schalansky, used
for this language pair, contains the longest sen-
tences in our dataset (on average 45 tokens per
sentence), which means that the intra-sentence con-
text is likely more informative than in other books
(see Table 8). Overall, SENT translations contain
29.5% more mistranslations, 65.4% more grammat-
ical errors, over 12 times more inconsistency errors,
and three times more register errors (see Table 5).

PARA is clearly better than GTR: PARA trans-
lations are overwhelmingly preferred over those

Figure 5: The number of votes for SENT vs PARA,
PARA_SENT vs PARA, and GTR vs PARA along with
rater confidence (confident or unsure). PARA is pre-
ferred to all competing methods. All differences are
statistically significant at p<.001 (binomial test).

from Google Translate (GTR), with an 82.8% pref-
erence rate (p<.001, 95% CI [0.765, 0.880]). Even
after removing the “unsure” votes, the preference
for PARA remains significant at 88.0% (p<.001,
95% CI [0.812, 0.930]). In the fr-ja, pl-ja, zh-ja,
and cs-pl language pairs, PARA received all of the
ten votes over GTR. Part of this advantage may
be attributed to GTR sometimes using English as
a pivot language, which can result in information
loss. Our Czech translator observed that mistakes
in GTR translations suggest the text was first trans-
lated into English.26 Overall, GTR translations
result in 57.7% more mistranslations, 37.3% more
grammatical errors, over twice as many inconsis-
tency errors, and ten times more register errors (see
Table 5). Additionally, GTR produced 125 format
errors while PARA produced perfect outputs in this
regard. Finally, it is worth noting that GTR left
fewer words untranslated, though this is inflated by
the fact that in one German text, the word “Bauer”
(“farmer”) was untranslated 14 times in the PARA
translation.

PARA is slightly preferred over PARA_SENT:
Our evaluations show that PARA is better than
PARA_SENT, but the gap is smaller than it is for
the other two methods. PARA is still preferred at a
66.1% rate (p<.001, 95% CI [0.587, 0.730]). After
removing the “unsure” votes, PARA remains the

26For the cs-pl language pair, we separately annotated
mistranslations arising from pivot translation. These errors
accounted for over 50% of all mistranslations in that lan-
guage pair. The elimination of the need for parallel data may
therefore be beneficial for translating between lower-resource
languages where sufficient parallel data is often unavailable
necessitating the pivot translation.

9
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LLMs for Evaluation

Score the following translation from {source_lang} to {target_lang} with respect
to the human reference on a continuous scale from 0 to 100, where score of zero means

"no meaning preserved" and score of one hundred means "perfect meaning and grammar".

{source_lang} source: "{source_seg}"

{target_lang} human reference: {reference_seg}
{target_lang} translation: "{target_seg}"

Score:

Figure 1: The best-performing prompt based on Direct Assessment expecting a score between 0–100. Template
portions in bold face are used only when a human reference translation is available.

Model name Abbrev. Model used

GPT-2 — Radford et al. (2019)
Ada — text-ada-001

Babbage Bab text-babbage-001

Curie Curie text-curie-001

Davinci-002 Dav2 text-davinci-002

ChatGPT Chat text-chat-davinci-002

Davinci-003 Dav3 text-davinci-003

GPT-3.5-turbo Turbo gpt-3.5-turbo

GPT-4 GPT4 gpt-4

Table 1: Details of all models used in this work. Models
are sorted from oldest to newest which also reflects their
respective power. GPT 2 and Ada do not work.

GPT 3 models are based on Ouyang et al. (2022).
The models are sorted based on their estimated
power or date of release. We acknowledge that Ope-
nAI has not released detailed information about the
architecture and training data behind given mod-
els. Most importantly, OpenAI claims that models
have been trained with data up until September
2021. It is important as we use testsets prepared
and released by December 2022.

3 Experiments

To measure the performance of the proposed
GEMBA metric, we follow the methodology and
use test data provided by the WMT22 Metrics
shared task (Freitag et al., 2022b) which hosts an
annual evaluation of automatic metrics, benchmark-
ing them against human gold labels. Effectively, we
compare GEMBA against the best-performing au-
tomatic metrics: COMET (Rei et al., 2020, 2022),
BLEURT (Sellam et al., 2020), or the non-public
winner MetricX XXL.

3.1 Test set

We use the MQM 2022 test set which contains
human judgments for the following three trans-
lation directions: English into German, English
into Russian, and Chinese into English. The test
set contains a total of 54 machine translation sys-
tem outputs or human translations. It contains a

total of 106k segments. Translation systems are
mainly from participants of the WMT22 General
MT shared task (Kocmi et al., 2022).

The source segments and human reference trans-
lations for each language pair contain around 2,000
sentences from four different texts domains: news,
social, conversational, and e-commerce. The gold
standard for scoring translation quality is based on
human MQM ratings, annotated by professionals
who mark individual errors in each translation, as
described in Freitag et al. (2021a).

3.2 Evaluation methods

To determine how well automatic metrics corre-
late with humans, we measure system-level, pair-
wise accuracy (accuracy, Kocmi et al., 2021). For
segment-level evaluation, we use Kendall’s Tau (⌧ ,
Freitag et al., 2022a).

Here, accuracy is defined as the number of sys-
tem pairs ranked correctly by the metric with re-
spect to the human ranking divided by the total
number of system pair comparisons.

Formally:

Accuracy =
|sign(metric�) == sign(human�)|

|all system pairs|

The variant of Kendall’s Tau used for metric eval-
uation changed over the years. Initially, Callison-
Burch et al. (2011) proposed to use Kendall’s Tau-a
ignoring human rankings that tied, while penalising
ties in automatic metrics.

⌧ =
|Concordant|� |Discordant|
|Concordant|+ |Discordant|

where Concordant is the set of all human seg-
ment comparisons for which a given metric sug-
gests the same order of systems and Discordant is
the set of all human comparisons for which a given
metric disagrees.

Large Language Models Are State-of-the-Art Evaluators of Translation Quality 
 

Tom Kocmi and Christian Federmann  2023
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LLMs for Evaluation
Metric

s1 < s2 s1 = s2 s1 > s2

H
um

an s1 < s2 Conc Disc Disc
s1 = s2 – – –
s1 > s2 Disc Disc Conc

This definition was later updated by Macháček
and Bojar (2014), who handle ties as a separate
group in contrast to Concordant and Discordant.
Metrics shared tasks Mathur et al. (2020) and Fre-
itag et al. (2021b) changed this back to the 2011
version. Last year, Freitag et al. (2022a) changed
it to Kendall’s Tau-b, which makes adjustments
for ties, we use the latest definition in our experi-
ments. Overall, ties in automatic metrics are rare
for non-identical translations but are an issue when
a method outputs only a discrete set of scores (as
in our case). Additionally, Kendall’s Tau is sus-
ceptible to noise in gold pairwise rankings (Freitag
et al., 2022a).

We reproduced all scores reported in the
WMT22 Metrics shared task findings paper with
the official WMT22 script.4 Reported scores match
Table 11 of the WMT22 metrics findings paper
(Freitag et al., 2022b).

4 Results

We investigate GEMBA’s performance for two
modes: with a reference translation and without
reference translation (in a quality estimation set-
ting). Table 2 reports pairwise accuracy on the
system level, comparing GEMBA-DA against the
best-performing metrics from the WMT22 Metrics
shared task (Freitag et al., 2022b). We use GPT-4
as the main model and GEMBA-DA as the main
style for some experiments.

4.1 Reference-based

The results in Table 2 show that our reference-
based GEMBA-GPT4-DA metric sets a new state
of the art. It outperforms all of the other reference-
based metrics from the WMT22 Metrics shared
task. The observed level of metric performance
is unexpected, especially considering that human
labels used as a gold standard in itself are noisy
and therefore an accuracy of 100% is impossible to
obtain for an automatic metric.

4.2 Quality estimation

Table 2 shows that our reference-less metric
GEMBA-GPT4-DA[noref] achieves the highest

4
https://github.com/google-research/

mt-metrics-eval

Metric Accuracy

GEMBA-GPT4-DA 89.8%
GEMBA-GPT4-DA[noref] 87.6%
MetricX XXL 85.0%
BLEURT-20 84.7%
COMET-22 83.9%
COMET-20 83.6%
UniTE 82.8%
MS-COMET-22 82.8%
MATESE 81.0%
YiSi-1 79.2%
COMETKiwi[noref] 78.8%
COMET-QE[noref] 78.1%
BERTScore 77.4%
UniTE-src[noref] 75.9%
MS-COMET-QE-22[noref] 75.5%
MATESE-QE[noref] 74.8%
f200spBLEU 74.1%
chrF 73.4%
BLEU 70.8%

Table 2: Results for the system-level pairwise accu-
racy compared to the current automatic metric. Metrics
marked as “[noref]” do not use a reference translation.

performance for the quality estimation mode, and
strongly outperforms all of the other reference-
less metrics. Moreover, it also outperforms all of
the other reference-based metrics, performing only
slightly worse than GEMBA-GPT4-DA. Again,
the observed level of assessment quality is unex-
pectedly high, highlighting the potential of using
LLMs for translation quality assessment tasks.

4.3 Comparison of GPT models

We compare the performance of various GPT ver-
sions as an automatic metric. Table 3 shows results
for all models we have experimented with and all
prompt variants tested.

We do not show results for GPT-2 or Ada mod-
els. Neither of those have produced replies in the
specific scoring range and neither seemed to be
producing any meaningful replies. We list a couple
of their answers in Appendix C. Based on our ex-
periments, we conclude that they are not powerful
enough to understand the zero-shot prompts.

By contrast, Babbage and Curie models appear
to understand what type of answer they should
produce, but the quality of their scores seems to be
close to random guessing. Thus, both Babbage and
Curie are useless for translation quality assessment.

The main performance jump occurs for GPT
3.5 and larger models, i.e., Davinci-002, ChatGPT,
Davinci-003, Turbo, and GPT-4. Each of them
achieves highly competitive results for all of the
prompt variants we have tested. Interestingly, Chat-

System level
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LLMs for Evaluation
Metric

s1 < s2 s1 = s2 s1 > s2

H
um

an s1 < s2 Conc Disc Disc
s1 = s2 – – –
s1 > s2 Disc Disc Conc

This definition was later updated by Macháček
and Bojar (2014), who handle ties as a separate
group in contrast to Concordant and Discordant.
Metrics shared tasks Mathur et al. (2020) and Fre-
itag et al. (2021b) changed this back to the 2011
version. Last year, Freitag et al. (2022a) changed
it to Kendall’s Tau-b, which makes adjustments
for ties, we use the latest definition in our experi-
ments. Overall, ties in automatic metrics are rare
for non-identical translations but are an issue when
a method outputs only a discrete set of scores (as
in our case). Additionally, Kendall’s Tau is sus-
ceptible to noise in gold pairwise rankings (Freitag
et al., 2022a).

We reproduced all scores reported in the
WMT22 Metrics shared task findings paper with
the official WMT22 script.4 Reported scores match
Table 11 of the WMT22 metrics findings paper
(Freitag et al., 2022b).

4 Results

We investigate GEMBA’s performance for two
modes: with a reference translation and without
reference translation (in a quality estimation set-
ting). Table 2 reports pairwise accuracy on the
system level, comparing GEMBA-DA against the
best-performing metrics from the WMT22 Metrics
shared task (Freitag et al., 2022b). We use GPT-4
as the main model and GEMBA-DA as the main
style for some experiments.

4.1 Reference-based

The results in Table 2 show that our reference-
based GEMBA-GPT4-DA metric sets a new state
of the art. It outperforms all of the other reference-
based metrics from the WMT22 Metrics shared
task. The observed level of metric performance
is unexpected, especially considering that human
labels used as a gold standard in itself are noisy
and therefore an accuracy of 100% is impossible to
obtain for an automatic metric.

4.2 Quality estimation

Table 2 shows that our reference-less metric
GEMBA-GPT4-DA[noref] achieves the highest

4
https://github.com/google-research/

mt-metrics-eval

Metric Accuracy

GEMBA-GPT4-DA 89.8%
GEMBA-GPT4-DA[noref] 87.6%
MetricX XXL 85.0%
BLEURT-20 84.7%
COMET-22 83.9%
COMET-20 83.6%
UniTE 82.8%
MS-COMET-22 82.8%
MATESE 81.0%
YiSi-1 79.2%
COMETKiwi[noref] 78.8%
COMET-QE[noref] 78.1%
BERTScore 77.4%
UniTE-src[noref] 75.9%
MS-COMET-QE-22[noref] 75.5%
MATESE-QE[noref] 74.8%
f200spBLEU 74.1%
chrF 73.4%
BLEU 70.8%

Table 2: Results for the system-level pairwise accu-
racy compared to the current automatic metric. Metrics
marked as “[noref]” do not use a reference translation.

performance for the quality estimation mode, and
strongly outperforms all of the other reference-
less metrics. Moreover, it also outperforms all of
the other reference-based metrics, performing only
slightly worse than GEMBA-GPT4-DA. Again,
the observed level of assessment quality is unex-
pectedly high, highlighting the potential of using
LLMs for translation quality assessment tasks.

4.3 Comparison of GPT models

We compare the performance of various GPT ver-
sions as an automatic metric. Table 3 shows results
for all models we have experimented with and all
prompt variants tested.

We do not show results for GPT-2 or Ada mod-
els. Neither of those have produced replies in the
specific scoring range and neither seemed to be
producing any meaningful replies. We list a couple
of their answers in Appendix C. Based on our ex-
periments, we conclude that they are not powerful
enough to understand the zero-shot prompts.

By contrast, Babbage and Curie models appear
to understand what type of answer they should
produce, but the quality of their scores seems to be
close to random guessing. Thus, both Babbage and
Curie are useless for translation quality assessment.

The main performance jump occurs for GPT
3.5 and larger models, i.e., Davinci-002, ChatGPT,
Davinci-003, Turbo, and GPT-4. Each of them
achieves highly competitive results for all of the
prompt variants we have tested. Interestingly, Chat-
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Behaviour LLMs vs MT?

Parallel data Bias:

• Noise from parallel data

• Data from strange domains with different distributions

 Monolingual Bias

• Instructions might fail to override LLM training

• Lack of teacher forcing supervision means might not 
be faithful to source sentence

• Favour fluency over accuracy eg, introducing 
undesirable punctuation or removing tokens which 
have been unseen

How Good Are GPT Models at Machine Translation? A Comprehensive 
Evaluation  Hendy et al. 2023
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Behaviour LLMs vs MT?
Sequence Type Translation Instance Phenomenon

Source Bis auf die E 95 02 wurden alle Lokomotiven zerlegt.
MS Translator With the exception of E 95 02, all locomotives were dismantled. Non-Monotonicity (NM)
GPT All locomotives were dismantled except for the E 95 02.
Source Oder ist sie ganz aus dem Sortiment genommen?
MS Translator Or is it completely removed from the range? Fluency (F)
GPT Or has it been completely removed from the range?
Source Sehen Sie bitte im Screenshot was der Kollege geschrieben hat
MS Translator Please see in the screenshot what the colleague wrote Punctuation Insertion (PI)
GPT Please see the screenshot for what the colleague wrote.
Source Die Email zur Stornierung wurde am 26.12.#NUMBER# versendet.
MS Translator The cancellation email was sent on 26.12.#NUMBER#. Dropped Content (USW)
GPT The cancellation email was sent on December 26th.
Source "We won’t accept the CAA and that is for sure.
MS Translator “⌘Ï�⇢•◊CAA�Ÿ/ØöÑ⇥ Inserted Content (UTW)
GPT “⌘Ï�⇢•◊⌦l⌘’↵�Ÿ/ØöÑ⇥

Table 8: Illustrated Examples of the Phenomena as described in Section 5. The origin of these differences
between translations lie in the computational mechanism leveraged for translations: When controlled for quality,
higher translation non-monotonicity suggests a more abstractive computation used for obtaining the translations.
Similarly, Fluency, Punctuation Insertion, Dropped and Inserted Content measure different translation characteris-
tics.

Figure 9: Comparisons of Unaligned Source Words
for the X-E language pairs. GPT Translations consis-
tently incur greater number of unaligned source words.

NMT systems. We first discuss the measurements
designed to elicit artifacts associated with the lan-
guage modeling bias.

5.2 Language Modeling Bias Artifacts
We propose and use five measurements over the test
sets to quantitatively explore language modeling
bias, in order to enumerate the differences in trans-
lations obtained from traditional NMT systems and
GPT. Below, we describe the properties as well as
the algorithms used for quantifying them (corre-
sponding illustrative examples of the phenomena
are presented in Table 8):

1. Translation Non-Monotonicity (NM): We
aim to measure how closely the translation

Figure 10: Comparisons of Unaligned Translation
Words for the X-E language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

tracks the source sentence. A more paraphras-
tic or a less literal translation is likely to devi-
ate from a close tracking of the source word
order (across language pairs). We use the non-
monotonicity metric proposed in Schioppa
et al. (2021), which computes the deviation
from the diagonal in the word to word align-
ment as the non-monotonicity measure. This
measurement could also be interpreted as
a normalized measure of alignment cross-
ings, which has been shown to correlate with
translation non-literalness (Schaeffer and Carl,
2014). This measurement has also been used
in Anonymous (2023b) for investigating trans-
lation literalness.
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Behaviour LLMs vs MT?D
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Figure 6: Human Evaluation: GPT Win Rates (%) based on Item Scores per language pair.

Figure 7: Fluency Comparisons for the X-E language
pairs. On 7 out of 8 language pairs, GPT translations
obtain lower perplexity, thereby producing more fluent
translations. The magnitude of the difference is higher
for Zh-En and Ja-En language pairs.

for the task could also mean that LLM based trans-
lations might not track the desired characteristics
of translations such as faithfulness to the source
as well as the NMT models trained with explicit
teacher-forced supervision (Anonymous, 2023b).

Language Modeling Bias: Despite the impres-
sive performance of in-context learning, constrain-
ing LLM behavior to explicitly follow the specifi-
cations of a desired task is a non-trivial problem.
Analyses of in-context learning have revealed how
the implicit zero-shot performance of LLMs might
be higher than their observed zero-shot perfor-
mance, with the demonstrations within in-context
learning themselves providing only limited learn-
ing signals (Min et al., 2022; Kojima et al., 2022;
Anonymous, 2023a). A direct implication of these

Figure 8: Comparisons of Punctuation Insertions for
the X-E language pairs. On 8 out of 8 language pairs,
GPT translations show a greater bias towards inserting
unsupported end of sentence markers in translation.

results for translation is that the demonstrations
used for in-context learning might fail to over-
ride the underlying computational bias of language
modeling which is likely to favor greater fluency
at the cost of adequacy. Such language model-
ing bias might also introduce undesirable artifacts,
e.g., punctuation insertions, acronym expansions,
world knowledge insertion, etc. in the translations
which could cause it to veer off from a faithful
cross-lingual representation of the input.

In the next subsection, we propose properties
along which finer-grained characteristics of GPT
translations could be enumerated. These measures
are designed to provide indirect measurements of
the language modeling bias as well as the parallel
data bias, which could allow a better differentia-
tion of GPT translations against translations from
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Behaviour LLMs vs MT?

Sequence Type Translation Instance Phenomenon

Source Bis auf die E 95 02 wurden alle Lokomotiven zerlegt.
MS Translator With the exception of E 95 02, all locomotives were dismantled. Non-Monotonicity (NM)
GPT All locomotives were dismantled except for the E 95 02.
Source Oder ist sie ganz aus dem Sortiment genommen?
MS Translator Or is it completely removed from the range? Fluency (F)
GPT Or has it been completely removed from the range?
Source Sehen Sie bitte im Screenshot was der Kollege geschrieben hat
MS Translator Please see in the screenshot what the colleague wrote Punctuation Insertion (PI)
GPT Please see the screenshot for what the colleague wrote.
Source Die Email zur Stornierung wurde am 26.12.#NUMBER# versendet.
MS Translator The cancellation email was sent on 26.12.#NUMBER#. Dropped Content (USW)
GPT The cancellation email was sent on December 26th.
Source "We won’t accept the CAA and that is for sure.
MS Translator “⌘Ï�⇢•◊CAA�Ÿ/ØöÑ⇥ Inserted Content (UTW)
GPT “⌘Ï�⇢•◊⌦l⌘’↵�Ÿ/ØöÑ⇥

Table 8: Illustrated Examples of the Phenomena as described in Section 5. The origin of these differences
between translations lie in the computational mechanism leveraged for translations: When controlled for quality,
higher translation non-monotonicity suggests a more abstractive computation used for obtaining the translations.
Similarly, Fluency, Punctuation Insertion, Dropped and Inserted Content measure different translation characteris-
tics.

Figure 9: Comparisons of Unaligned Source Words
for the X-E language pairs. GPT Translations consis-
tently incur greater number of unaligned source words.

NMT systems. We first discuss the measurements
designed to elicit artifacts associated with the lan-
guage modeling bias.

5.2 Language Modeling Bias Artifacts
We propose and use five measurements over the test
sets to quantitatively explore language modeling
bias, in order to enumerate the differences in trans-
lations obtained from traditional NMT systems and
GPT. Below, we describe the properties as well as
the algorithms used for quantifying them (corre-
sponding illustrative examples of the phenomena
are presented in Table 8):

1. Translation Non-Monotonicity (NM): We
aim to measure how closely the translation

Figure 10: Comparisons of Unaligned Translation
Words for the X-E language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

tracks the source sentence. A more paraphras-
tic or a less literal translation is likely to devi-
ate from a close tracking of the source word
order (across language pairs). We use the non-
monotonicity metric proposed in Schioppa
et al. (2021), which computes the deviation
from the diagonal in the word to word align-
ment as the non-monotonicity measure. This
measurement could also be interpreted as
a normalized measure of alignment cross-
ings, which has been shown to correlate with
translation non-literalness (Schaeffer and Carl,
2014). This measurement has also been used
in Anonymous (2023b) for investigating trans-
lation literalness.

Figure 11: Comparisons of Translation Non-
Monotonicity for the X-E language pairs. GPT
Translations consistently score higher on the non-
monotonicity of translations.

Figure 12: Comparisons of Punctuation Insertions
for the E-X language pairs. On 8 out of 8 language
pairs, GPT translations obtain higher scores.

2. Translation Fluency (TF): We measure
translation fluency using a strong, indepen-
dently trained language model (‘gpt2-large’,
Radford et al. (2019)). We restrict this mea-
surement to X-E direction, since GPT-2 has
only been trained on English text (Radford
et al., 2019).

3. Punctuation Insertion (PI): Language mod-
eling bias can prefer one mode of sentence
completion in contrast to others. This can re-
veal itself in the presence of not well-formed
inputs such as sentences that do not end with
typical end of sentence markers (comma, pe-
riod and exclamation). We measure the frac-
tion of input sentences for which the transla-
tion contains an end of sentence marker but
the source does not. The insertion of an end
of sentence marker in such instances is inade-
quate for translation, a task which strives for

Figure 13: Comparisons of Unaligned Source Words
for the E-X language pairs. GPT Translations, on aver-
age, incur greater number of unaligned source words.

Figure 14: Comparisons of Unaligned Translation
Words for the E-X language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

bitext equivalency.

4. Unaligned Source Words (USW): We mea-
sure the number of source words left un-
aligned in a word to word alignment obtained
over the source and output translations. When
controlled for quality, a more paraphrastic
translation is likely to contain more words that
do not align with the words in the source sen-
tence. This measurement was used in Anony-
mous (2023b) as a measure of translation lit-
eralness and we use it similarly to obtain a
measurement of content that is dropped in a
translation – an untranslated word or phrase
in a source sentence is likely to find no align-
ments in the output. For obtaining word to
word alignments, we use a multilingual-bert
based aligner (Devlin et al., 2019; Dou and
Neubig, 2021).

5. Unaligned Translation Words (UTW): We
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Behaviour LLMs vs MT?

Sequence Type Translation Instance Phenomenon

Source Bis auf die E 95 02 wurden alle Lokomotiven zerlegt.
MS Translator With the exception of E 95 02, all locomotives were dismantled. Non-Monotonicity (NM)
GPT All locomotives were dismantled except for the E 95 02.
Source Oder ist sie ganz aus dem Sortiment genommen?
MS Translator Or is it completely removed from the range? Fluency (F)
GPT Or has it been completely removed from the range?
Source Sehen Sie bitte im Screenshot was der Kollege geschrieben hat
MS Translator Please see in the screenshot what the colleague wrote Punctuation Insertion (PI)
GPT Please see the screenshot for what the colleague wrote.
Source Die Email zur Stornierung wurde am 26.12.#NUMBER# versendet.
MS Translator The cancellation email was sent on 26.12.#NUMBER#. Dropped Content (USW)
GPT The cancellation email was sent on December 26th.
Source "We won’t accept the CAA and that is for sure.
MS Translator “⌘Ï�⇢•◊CAA�Ÿ/ØöÑ⇥ Inserted Content (UTW)
GPT “⌘Ï�⇢•◊⌦l⌘’↵�Ÿ/ØöÑ⇥

Table 8: Illustrated Examples of the Phenomena as described in Section 5. The origin of these differences
between translations lie in the computational mechanism leveraged for translations: When controlled for quality,
higher translation non-monotonicity suggests a more abstractive computation used for obtaining the translations.
Similarly, Fluency, Punctuation Insertion, Dropped and Inserted Content measure different translation characteris-
tics.

Figure 9: Comparisons of Unaligned Source Words
for the X-E language pairs. GPT Translations consis-
tently incur greater number of unaligned source words.

NMT systems. We first discuss the measurements
designed to elicit artifacts associated with the lan-
guage modeling bias.

5.2 Language Modeling Bias Artifacts
We propose and use five measurements over the test
sets to quantitatively explore language modeling
bias, in order to enumerate the differences in trans-
lations obtained from traditional NMT systems and
GPT. Below, we describe the properties as well as
the algorithms used for quantifying them (corre-
sponding illustrative examples of the phenomena
are presented in Table 8):

1. Translation Non-Monotonicity (NM): We
aim to measure how closely the translation

Figure 10: Comparisons of Unaligned Translation
Words for the X-E language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

tracks the source sentence. A more paraphras-
tic or a less literal translation is likely to devi-
ate from a close tracking of the source word
order (across language pairs). We use the non-
monotonicity metric proposed in Schioppa
et al. (2021), which computes the deviation
from the diagonal in the word to word align-
ment as the non-monotonicity measure. This
measurement could also be interpreted as
a normalized measure of alignment cross-
ings, which has been shown to correlate with
translation non-literalness (Schaeffer and Carl,
2014). This measurement has also been used
in Anonymous (2023b) for investigating trans-
lation literalness.

Figure 11: Comparisons of Translation Non-
Monotonicity for the X-E language pairs. GPT
Translations consistently score higher on the non-
monotonicity of translations.

Figure 12: Comparisons of Punctuation Insertions
for the E-X language pairs. On 8 out of 8 language
pairs, GPT translations obtain higher scores.

2. Translation Fluency (TF): We measure
translation fluency using a strong, indepen-
dently trained language model (‘gpt2-large’,
Radford et al. (2019)). We restrict this mea-
surement to X-E direction, since GPT-2 has
only been trained on English text (Radford
et al., 2019).

3. Punctuation Insertion (PI): Language mod-
eling bias can prefer one mode of sentence
completion in contrast to others. This can re-
veal itself in the presence of not well-formed
inputs such as sentences that do not end with
typical end of sentence markers (comma, pe-
riod and exclamation). We measure the frac-
tion of input sentences for which the transla-
tion contains an end of sentence marker but
the source does not. The insertion of an end
of sentence marker in such instances is inade-
quate for translation, a task which strives for

Figure 13: Comparisons of Unaligned Source Words
for the E-X language pairs. GPT Translations, on aver-
age, incur greater number of unaligned source words.

Figure 14: Comparisons of Unaligned Translation
Words for the E-X language pairs. GPT Translations
consistently incur greater number of unaligned target
words.

bitext equivalency.

4. Unaligned Source Words (USW): We mea-
sure the number of source words left un-
aligned in a word to word alignment obtained
over the source and output translations. When
controlled for quality, a more paraphrastic
translation is likely to contain more words that
do not align with the words in the source sen-
tence. This measurement was used in Anony-
mous (2023b) as a measure of translation lit-
eralness and we use it similarly to obtain a
measurement of content that is dropped in a
translation – an untranslated word or phrase
in a source sentence is likely to find no align-
ments in the output. For obtaining word to
word alignments, we use a multilingual-bert
based aligner (Devlin et al., 2019; Dou and
Neubig, 2021).

5. Unaligned Translation Words (UTW): We

• Ignore more source - no more 
inserted target

• Less literal

• Better for figurative text
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Opportunities
Controllable: 

Translate “How are you doing?” in formal Spanish

¿Cómo está usted?
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Opportunities

Interactive: 

Translate “How are you doing?” in formal Spanish

¿Cómo está usted?

Address the greeting to Señor García

¿Cómo está Señor García?
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Opportunities
Multitask: 

Translate “The Select Budget Committee” to 
Spanish and tell me which words you think 
are correct? 

"El Comité Permanente de Presupuesto” The 
the word “Permanente” could be wrong.
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Some Challenges

• How to study such large models rigorously?

• Computational costs of training and inference

• Ensuring faithfulness, lack of bias, long tail of low-
resource languages

• How to leverage labelled data with LLM?
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Conclusion

• Saying: “May you live in interesting times” 

• A huge number of research and practical MT problems 
to solve

• Unique generative NLP task with lessons for the field: 

• Large amounts of labelled data: both translations 
and evaluations

• Maturer understanding of evaluation and human 
interaction


